organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-nitropyridinium hydrogen selenate

Samah Akriche* and Mohamed Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia Correspondence e-mail: samah.akriche@fsb.rnu.tn

Received 8 October 2009; accepted 15 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.101; data-to-parameter ratio = 16.2.

There are two cations and two anions in the asymmetric unit of the title compound, $C_5H_6N_3O_2^+$ ·HSeO₄⁻. In the crystal, there are two independent chains of HSeO₄⁻ anions running along the *a* axis, linked by O-H···O hydrogen bonds. Ribbons of cations linked by N-H···O hydrogen bonds run along the *b*axis direction, and are further hydrogen bonded to the anions by N-H···O and C-H···O links, generating a threedimensional network.

Related literature

For related structures of 2-amino-5-nitropyridinium salts, see: Pécaut *et al.* (1993*a,b*); Masse & Zyss (1991); Zyss *et al.* (1993); Watanabe *et al.* (1993); Pécaut & Masse (1994). For hydrogen bonds, see: Desiraju (1991); Steiner (1993, 1994). For bond lengths in related structures, see: Aakeröy *et al.* (1998). Ferraris & Ivaldi (1984).

Experimental

Crystal data $C_{5}H_{6}N_{3}O_{2}^{+}\cdot HSeO_{4}^{-}$ $M_{r} = 284.10$ Orthorhombic, *Pbca* a = 9.092 (3) Å b = 13.416 (2) Å c = 30.149 (4) Å

Data collection

Enraf–Nonius TurboCAD-4 diffractometer $V = 3677.5 (14) Å^{3}$ Z = 16 Mo K\alpha radiation \mu = 4.10 mm^{-1} T = 298 K 0.23 \times 0.21 \times 0.19 mm

Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.403, T_{\max} = 0.444$ 8480 measured reflections 4426 independent reflections 2650 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.101$ S = 0.974426 reflections 2 standard reflections frequency: 120 min intensity decay: 6%

273 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O4^{i}$	0.82	1.75	2.527 (5)	158
O8−H8···O7 ⁱⁱ	0.82	1.73	2.546 (5)	173
$N1 - H1 \cdots O3$	0.86	1.95	2.773 (5)	161
$N2-H2A\cdots O3$	0.86	2.46	3.152 (6)	138
$N2 - H2B \cdots O6$	0.86	2.15	2.943 (6)	152
$N2-H2B\cdots O9^{iii}$	0.86	2.54	3.057 (6)	119
$N4-H4\cdots O5$	0.86	2.01	2.769 (5)	146
$N5-H5A\cdots O5$	0.86	2.27	2.958 (6)	137
$N5-H5B\cdots O1$	0.86	2.02	2.833 (6)	157
$N5-H5B\cdots O11^{iv}$	0.86	2.56	3.016 (6)	115
$C2-H2C\cdots O6$	0.93	2.37	3.132 (6)	139
$C8-H8C\cdots O4^{v}$	0.93	2.37	3.261 (6)	159
$C3-H3\cdots O7^{vi}$	0.93	2.41	3.202 (6)	143
$C5-H5C\cdots O2^{i}$	0.93	2.50	3.245 (6)	137
$C5-H5C\cdots O10^{vii}$	0.93	2.50	3.150 (6)	128
$C7 - H7 \cdot \cdot \cdot O1$	0.93	2.52	3.228 (6)	134
$C10-H10\cdots O5^{ii}$	0.93	2.23	3.130 (6)	162

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (vi) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (vii) -x + 2, -y + 1, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5132).

References

Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. pp. 1385–1389.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1-6.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Masse, R. & Zyss, J. (1991). Mol. Eng. 1, 141–152.
- Pécaut, J., Le Fur, Y. & Masse, R. (1993*a*). Acta Cryst. B**49**, 535–541.
- Pécaut, J., Lévy, J. P. & Masse, R. (1993b). J. Mater. Chem. 3, 999–1003.
- Pécaut, J. & Masse, R. (1994). J. Mater. Chem. 4, 1851–1854.
- Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.
- Steiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540-4547.
- Steiner, T. & Saenger, W. (1994). Acta Cryst. B50, 348-357.

Watanabe, O., Noritake, T., Hirose, Y., Okada, A. & Kurauchi, T. (1993). J. Mater. Chem. 3, 1053–1057. Zyss, J., Masse, R., Bagieu-Beucher, M. & Levy, J. P. (1993). Adv. Mater. 5, 120–124.

Acta Cryst. (2009). E65, o3009-o3010 [doi:10.1107/S1600536809042354]

2-Amino-5-nitropyridinium hydrogen selenate

S. Akriche and M. Rzaigui

Comment

The 2-amino-5-nitropyridine (2 A5NP) chromophore is promising candidate for non linear optics. From this molecule, several salts having noncentrosymmetric structures were obtained: dihydrogenphosphate, dihydrogenarsenate, chloride, bromide, tartrate, and acetophosphonate of 2-amino-5-nitropyridinium (Pécaut *et al.*, 1993a,b; Masse *et al.*, 1991; Pécaut *et al.*, 1993, Zyss *et al.*, 1993; Watanabe *et al.*, 1993; Pécaut Masse, 1994). In the framework of our systematic research on nitropyridine chromophore, we report on the new compound $(C_5H_6N_3O_2)^+$, HSeO₄⁻ synthesized from the 2-amino-5-nitropyridine and selenic acid.

The asymmetric unit of the title compound (I) that contains two 2-amino-5-nitropyridinium cations and two hydrogen selenate anions, is shown in Fig. 1. The connection between theses independent components generate a three-dimensional supramolecular network which is stabilized by hydrogen bonds, Van Der Waals and electrostatic interactions. In fact, The two hydrogen selenate anions are connected through strong hydrogen bonds characterized by relatively short distances, from 1.73 to 1.75 A% (Table 1), to form two independent robust chains extending along a direction (Fig. 2). Both cations are arranged in ribbons and anchored onto both adjacent anionic chains via N-H...O and C-H...O hydrogen bonds. The C—H···O bonds have already been evidenced by several authors in molecular crystals; (Desiraju et al., 1991; Steiner et al., 1993 and 1994). With regards to the organic subnetwork, each 2 A5NP cation is hydrogen bonded to symmetry-equivalent 2 A5NP cation by rather long N—H···O and C—H···O bonds (with distances N2—H2B···O9 (x - 1, y, z) = 2.54A% and C5—H5C···O10 (-x + 2, -y + 1, -z + 1) = 2.50 A%) as to form ribbons running along the b axis. In the selenate chains, it is noteworthy that the O···O distances involved in hydrogen bonds (2.527 (5) to 2.546 (5) A%) are of the same order of magnitude as the O…O distances in HSeO₄ (2.41 to 2.56A%); this should allow us to consider the (HSeO₄⁻)_n subnetwork as a polyanion. The geometrical features of $HSeO_4$ entities, show that the Se–O bonds are significantly shorter [1.592 (4) to 1.623 (3) A% than the Se—OH bonds [1.690 (4) to 1.696 (4)A%], which is in accordance with the data relative to the protonated oxoanions as reported by (Ferraris et al., 1984) Bond lengths and angles of the organic cations can be regarded as normal and are comparable with values of other 2-amino-5-nitropyridinium compounds. The organic ring atoms of both independent cations are essentially planar (the deviations from least-square planes are 0.001 and 0.002 Å). The angles between the plane of the NO₂ group and the pyridinium rings are 4.9 (3) and 5.8 (4)°. This distortion is evident because the oxygen atoms of the NO2 group are the seat of various types of inter-and intramolecular hydrogen bonds. Moreover, the C-NH₂ (1.312 (6) and 1.315 (6)Å) and C-NO₂ (1.459 (6) and 1.466 (6) Å) distances in the 2 A5NP cations are respectively shortened and lengthened with respect to the C-NH2 (1.337 (4) Å) and C-NO2 (1.429 (4) Å) observed in the 2-amino-5-nitropyridine molecular crystal (Aakeröy, et al., 1998). All the 2-amino-5-nitropyridinium cations hosted in various organic or inorganic matrices show the same changes in C-NH₂ and C-NO₂ distances, revealing a weak increase of π bond character in C—NH₂ and a decrease in C—NO₂.

Experimental

The starting materials, 2-amino-5-nitropyridine (2-A5NP) and selenic acid (Aldrich, 40 wt% in H₂O, 99.95%) were used as supplied. 5 mmol of selenic acid was added to a hot solution (20 ml of water and 5 ml of ethanol) of 2-A5NP (5 mmol). The mixture was cooled and slowly evaporated at room temperature for several days until it resulted in yellow prisms of (I).

Figures

Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.

Fig. 2. Projection of (I) along the *a* axis.

2-Amino-5-nitropyridinium hydrogen selenate

$C_5H_6N_3O_2^+ \cdot HO_4Se^-$	$F_{000} = 2240$
$M_r = 284.10$	$D_{\rm x} = 2.052 \ {\rm Mg \ m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 25 reflections
a = 9.092 (3) Å	$\theta = 9 - 11^{\circ}$
b = 13.416 (2) Å	$\mu = 4.10 \text{ mm}^{-1}$
c = 30.149 (4) Å	T = 298 K
$V = 3677.5 (14) \text{ Å}^3$	Prism, yellow
Z = 16	$0.23\times0.21\times0.19~mm$
Data collection	

Enraf–Nonius TurboCAD-4 diffractometer	$R_{\rm int} = 0.075$
Monochromator: graphite	$\theta_{max} = 28.0^{\circ}$
T = 298 K	$\theta_{\min} = 2.6^{\circ}$
Non–profiled ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan (Blessing, 1995)	$k = 0 \rightarrow 17$
$T_{\min} = 0.403, \ T_{\max} = 0.444$	$l = 0 \rightarrow 39$
8480 measured reflections	2 standard reflections
4426 independent reflections	every 120 min

2650 reflections with $I > 2\sigma(I)$	intensity decay: 6%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.0438P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{max} < 0.001$
4426 reflections	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
273 parameters	$\Delta \rho_{\rm min} = -0.59 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Se1	0.36683 (5)	0.57372 (4)	0.271792 (15)	0.02983 (13)
Se2	0.41005 (5)	0.29253 (4)	0.487699 (15)	0.03145 (13)
01	0.3545 (5)	0.2664 (4)	0.43901 (12)	0.0799 (15)
O2	0.5188 (4)	0.1974 (3)	0.50425 (14)	0.0553 (11)
H2	0.5936	0.1963	0.4890	0.083*
O3	0.5015 (5)	0.3935 (3)	0.49155 (15)	0.0644 (12)
O4	0.2793 (4)	0.2887 (3)	0.52431 (10)	0.0452 (9)
O5	0.2967 (4)	0.4638 (3)	0.27541 (12)	0.0459 (9)
O6	0.4460 (4)	0.6107 (3)	0.31613 (11)	0.0476 (10)
O7	0.4741 (4)	0.5824 (3)	0.22931 (11)	0.0554 (11)
O8	0.2301 (4)	0.6563 (3)	0.26121 (17)	0.0647 (13)
H8	0.1503	0.6299	0.2659	0.097*
O9	1.1750 (4)	0.5569 (3)	0.38425 (14)	0.0651 (13)
O10	1.1601 (4)	0.5021 (3)	0.45094 (14)	0.0589 (11)
011	-0.3916 (4)	0.2918 (3)	0.36698 (16)	0.0712 (14)
O12	-0.3715 (4)	0.3419 (4)	0.29945 (16)	0.0713 (13)
N1	0.7158 (4)	0.4848 (3)	0.44020 (13)	0.0345 (9)

H1	0.6641	0.4587	0.4611	0.041*
N2	0.5007 (4)	0.5204 (3)	0.40355 (15)	0.0420 (11)
H2A	0.4529	0.4972	0.4259	0.050*
H2B	0.4539	0.5430	0.3809	0.050*
N3	1.1047 (5)	0.5295 (3)	0.41618 (15)	0.0419 (11)
N4	0.0710 (4)	0.3519 (3)	0.31176 (13)	0.0358 (10)
H4	0.1237	0.3769	0.2909	0.043*
N5	0.2842 (4)	0.3237 (3)	0.35110 (14)	0.0436 (11)
H5A	0.3340	0.3483	0.3294	0.052*
H5B	0.3288	0.3025	0.3744	0.052*
N6	-0.3196 (5)	0.3149 (3)	0.33474 (19)	0.0468 (12)
C1	0.6453 (5)	0.5211 (3)	0.40398 (16)	0.0327 (11)
C2	0.7316 (5)	0.5571 (3)	0.36909 (14)	0.0309 (11)
H2C	0.6864	0.5780	0.3430	0.037*
C3	0.8802 (5)	0.5620 (3)	0.37265 (15)	0.0328 (11)
H3	0.9374	0.5874	0.3497	0.039*
C4	0.9448 (5)	0.5275 (4)	0.41192 (16)	0.0311 (11)
C5	0.8634 (5)	0.4879 (4)	0.44491 (16)	0.0342 (11)
H5C	0.9080	0.4632	0.4704	0.041*
C6	0.1403 (5)	0.3185 (3)	0.34854 (15)	0.0305 (10)
C9	-0.1590 (5)	0.3146 (3)	0.33920 (17)	0.0330 (11)
C8	-0.0953 (5)	0.2830 (3)	0.37952 (16)	0.0341 (11)
H8C	-0.1541	0.2621	0.4030	0.041*
C7	0.0523 (5)	0.2838 (3)	0.38333 (15)	0.0312 (11)
H7	0.0960	0.2611	0.4093	0.037*
C10	-0.0746 (5)	0.3482 (4)	0.30600 (16)	0.0356 (11)
H10	-0.1167	0.3687	0.2794	0.043*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	0.0236 (2)	0.0403 (3)	0.0256 (2)	-0.0052 (2)	0.00113 (19)	-0.0015 (2)
Se2	0.0267 (2)	0.0409 (3)	0.0268 (2)	-0.0001 (2)	0.00137 (19)	0.0081 (2)
01	0.061 (3)	0.148 (5)	0.030 (2)	0.001 (3)	-0.006 (2)	-0.004 (3)
O2	0.035 (2)	0.051 (2)	0.080 (3)	0.0063 (18)	0.0125 (19)	0.029 (2)
O3	0.070 (3)	0.039 (2)	0.084 (3)	-0.015 (2)	0.034 (2)	0.000 (2)
O4	0.0268 (19)	0.076 (3)	0.0327 (19)	-0.0044 (18)	0.0055 (14)	0.0082 (19)
O5	0.045 (2)	0.038 (2)	0.054 (2)	-0.0077 (17)	0.0136 (18)	-0.0064 (18)
O6	0.052 (2)	0.061 (3)	0.0296 (19)	-0.007 (2)	-0.0080 (17)	-0.0101 (18)
O7	0.035 (2)	0.100 (3)	0.0312 (19)	-0.023 (2)	0.0111 (16)	-0.006 (2)
O8	0.029 (2)	0.049 (2)	0.117 (4)	-0.0035 (18)	-0.009 (2)	0.025 (2)
O9	0.033 (2)	0.105 (4)	0.058 (3)	-0.007 (2)	0.012 (2)	0.002 (3)
O10	0.039 (2)	0.075 (3)	0.062 (3)	0.008 (2)	-0.015 (2)	0.004 (2)
O11	0.033 (2)	0.086 (4)	0.094 (4)	-0.004 (2)	0.025 (2)	0.012 (3)
O12	0.031 (2)	0.093 (4)	0.091 (4)	0.002 (2)	-0.016 (2)	0.016 (3)
N1	0.031 (2)	0.041 (2)	0.032 (2)	-0.0018 (19)	0.0058 (17)	0.0056 (19)
N2	0.025 (2)	0.057 (3)	0.044 (3)	-0.003 (2)	0.0021 (18)	0.007 (2)
N3	0.033 (3)	0.046 (3)	0.047 (3)	0.004 (2)	0.001 (2)	-0.007 (2)

N4	0.028 (2)	0.050 (3)	0.029 (2)	-0.0023 (19)	-0.0010 (17)	0.0121 (19)
N5	0.031 (2)	0.059 (3)	0.040 (2)	-0.005 (2)	-0.0055 (18)	0.008 (2)
N6	0.030 (2)	0.032 (3)	0.079 (4)	0.0035 (19)	-0.003 (3)	0.000 (2)
C1	0.038 (3)	0.024 (2)	0.036 (3)	0.001 (2)	0.000 (2)	-0.004 (2)
C2	0.030 (3)	0.039 (3)	0.024 (2)	0.002 (2)	0.000 (2)	0.002 (2)
C3	0.034 (3)	0.031 (3)	0.033 (3)	0.001 (2)	0.007 (2)	0.001 (2)
C4	0.027 (3)	0.034 (3)	0.033 (3)	0.001 (2)	0.000 (2)	-0.006 (2)
C5	0.035 (3)	0.035 (3)	0.032 (3)	0.002 (2)	-0.008 (2)	-0.001 (2)
C6	0.028 (2)	0.030 (3)	0.034 (3)	-0.001 (2)	-0.006 (2)	-0.003 (2)
C9	0.027 (3)	0.027 (3)	0.046 (3)	-0.001 (2)	0.000 (2)	-0.004 (2)
C8	0.039 (3)	0.030 (3)	0.033 (3)	0.000 (2)	0.012 (2)	-0.004 (2)
C7	0.037 (3)	0.032 (3)	0.024 (2)	0.002 (2)	-0.004 (2)	0.001 (2)
C10	0.033 (3)	0.041 (3)	0.034 (3)	-0.002 (2)	-0.010 (2)	0.010 (2)

Geometric parameters (Å, °)

Sel—O6	1.597 (3)	N4C10	1.337 (6)
Se1—O5	1.610 (3)	N4—C6	1.352 (6)
Se1—O7	1.614 (3)	N4—H4	0.8600
Se1—O8	1.696 (4)	N5—C6	1.312 (6)
Se2—O1	1.592 (4)	N5—H5A	0.8600
Se2—O3	1.594 (4)	N5—H5B	0.8600
Se2—O4	1.623 (3)	N6—C9	1.466 (6)
Se2—O2	1.690 (4)	C1—C2	1.398 (6)
O2—H2	0.8200	C2—C3	1.357 (6)
O8—H8	0.8200	C2—H2C	0.9300
O9—N3	1.213 (5)	C3—C4	1.400 (6)
O10—N3	1.220 (5)	С3—Н3	0.9300
O11—N6	1.213 (6)	C4—C5	1.349 (7)
O12—N6	1.219 (6)	С5—Н5С	0.9300
N1—C5	1.350 (6)	C6—C7	1.399 (6)
N1—C1	1.356 (6)	C9—C10	1.339 (7)
N1—H1	0.8600	С9—С8	1.412 (7)
N2—C1	1.315 (6)	C8—C7	1.347 (6)
N2—H2A	0.8600	C8—H8C	0.9300
N2—H2B	0.8600	С7—Н7	0.9300
N3—C4	1.459 (6)	C10—H10	0.9300
O6—Se1—O5	113.95 (19)	O12—N6—C9	117.8 (5)
O6—Se1—O7	111.69 (19)	N2-C1-N1	118.5 (5)
O5—Se1—O7	111.02 (19)	N2-C1-C2	123.8 (5)
O6—Se1—O8	106.5 (2)	N1—C1—C2	117.7 (5)
O5—Se1—O8	108.74 (19)	C3—C2—C1	121.1 (5)
O7—Se1—O8	104.3 (2)	C3—C2—H2C	119.5
O1—Se2—O3	114.9 (3)	C1—C2—H2C	119.5
O1—Se2—O4	112.8 (2)	C2—C3—C4	117.9 (4)
O3—Se2—O4	111.1 (2)	С2—С3—Н3	121.0
O1—Se2—O2	107.0 (3)	С4—С3—Н3	121.0
O3—Se2—O2	108.3 (2)	C5—C4—C3	121.5 (4)
O4—Se2—O2	101.76 (18)	C5—C4—N3	119.3 (4)

Se2—O2—H2	109.5	C3—C4—N3	119.1 (4)
Se1-08-H8	109.5	C4—C5—N1	118.7 (4)
C5—N1—C1	122.9 (4)	С4—С5—Н5С	120.6
C5—N1—H1	118.6	N1—C5—H5C	120.6
C1—N1—H1	118.6	N5	119.7 (4)
C1—N2—H2A	120.0	N5—C6—C7	123.0 (4)
C1—N2—H2B	120.0	N4—C6—C7	117.3 (4)
H2A—N2—H2B	120.0	С10—С9—С8	120.7 (4)
O9—N3—O10	123.7 (5)	C10-C9-N6	120.0 (5)
O9—N3—C4	117.4 (4)	C8—C9—N6	119.2 (5)
O10—N3—C4	118.8 (4)	С7—С8—С9	118.7 (4)
C10—N4—C6	123.8 (4)	С7—С8—Н8С	120.7
C10—N4—H4	118.1	С9—С8—Н8С	120.7
C6—N4—H4	118.1	C8—C7—C6	120.6 (4)
C6—N5—H5A	120.0	С8—С7—Н7	119.7
C6—N5—H5B	120.0	С6—С7—Н7	119.7
H5A—N5—H5B	120.0	N4—C10—C9	118.9 (4)
O11—N6—O12	124.5 (5)	N4	120.6
O11—N6—C9	117.6 (5)	С9—С10—Н10	120.6
C5—N1—C1—N2	-175.8 (4)	C10—N4—C6—N5	179.0 (5)
C5—N1—C1—C2	4.3 (7)	C10—N4—C6—C7	-4.0 (7)
N2-C1-C2-C3	175.6 (5)	O11—N6—C9—C10	-173.8 (5)
N1—C1—C2—C3	-4.5 (7)	O12—N6—C9—C10	3.5 (7)
C1—C2—C3—C4	1.6 (7)	O11—N6—C9—C8	3.1 (7)
C2—C3—C4—C5	1.8 (7)	O12—N6—C9—C8	-179.5 (5)
C2—C3—C4—N3	178.4 (4)	C10-C9-C8-C7	-2.5 (7)
O9—N3—C4—C5	173.2 (5)	N6—C9—C8—C7	-179.5 (4)
O10—N3—C4—C5	-5.4 (7)	C9—C8—C7—C6	2.2 (7)
O9—N3—C4—C3	-3.4 (7)	N5—C6—C7—C8	177.8 (5)
O10—N3—C4—C3	177.9 (5)	N4—C6—C7—C8	0.9 (7)
C3—C4—C5—N1	-2.2 (7)	C6—N4—C10—C9	3.7 (8)
N3—C4—C5—N1	-178.8 (4)	C8—C9—C10—N4	-0.3 (8)
C1—N1—C5—C4	-1.0 (7)	N6-C9-C10-N4	176.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O2—H2···O4 ⁱ	0.82	1.75	2.527 (5)	158
O8—H8···O7 ⁱⁱ	0.82	1.73	2.546 (5)	173
N1—H1…O3	0.86	1.95	2.773 (5)	161
N2—H2A···O3	0.86	2.46	3.152 (6)	138
N2—H2B…O6	0.86	2.15	2.943 (6)	152
N2—H2B···O9 ⁱⁱⁱ	0.86	2.54	3.057 (6)	119
N4—H4…O5	0.86	2.01	2.769 (5)	146
N5—H5A···O5	0.86	2.27	2.958 (6)	137
N5—H5B…O1	0.86	2.02	2.833 (6)	157
N5—H5B···O11 ^{iv}	0.86	2.56	3.016 (6)	115
С2—Н2С…О6	0.93	2.37	3.132 (6)	139

C8—H8C···O4 ^v	0.93	2.37	3.261 (6)	159	
C3—H3····O7 ^{vi}	0.93	2.41	3.202 (6)	143	
C5—H5C···O2 ⁱ	0.93	2.50	3.245 (6)	137	
C5—H5C···O10 ^{vii}	0.93	2.50	3.150 (6)	128	
С7—Н7…О1	0.93	2.52	3.228 (6)	134	
C10—H10…O5 ⁱⁱ	0.93	2.23	3.130 (6)	162	

Symmetry codes: (i) *x*+1/2, -*y*+1/2, -*z*+1; (ii) *x*-1/2, *y*, -*z*+1/2; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*; (v) *x*-1/2, -*y*+1/2, -*z*+1; (vi) *x*+1/2, *y*, -*z*+1/2; (vii) -*x*+2, -*y*+1, -*z*+1.

Fig. 2